ROOT-based Event Display for LBNE-35t

Chao Zhang (BNL)
Xiaoyue Li (Stony Brook University)

Updates Since Doc-8715

- Renamed the project to RED35
 - https://github.com/czczc/RED35
- Updated the geometry to use lbne35tapa_v3.gdml
- Updated to work with LarSoft v4_01
 - renamed the Module to CTree35t
 - currently in a feature brach feature/chaoz_ctree
- Added more information to the event display
 - wire signals (raw, calibrated, hits)
 - MC tracks (2d, 3d)
 - Reco tracks (3d)

Components of RED35

- There are basically <u>three components</u> in RED35
 - A converter to convert sim/reco files to a event tree for offline reading (dependent on LarSoft)
 - git flow feature pull origin chaoz_ctree
 - ▶ lar -c ctree35t.fcl [sim/reco root file]
 - A 3D Event Display (independent of LarSoft)
 - based on the ROOT module EVE (invented for the ALICE experiment)
 https://root.cern.ch/root/htmldoc/GRAF3D EVE Index.html
 - A 2D Event Display (independent of LarSoft)
 - based on the ROOT GUI widgets
 https://root.cern.ch/root/html/GUI GUI Index.html
- How to install and run (on your own computer) https://github.com/czczc/RED35

The Converter

lar -c ctree35t.fcl [sim/reco root file]

- Currently the following information are stored as branches in the converted TTree
 - MC particles
 - tracks
 - mother/daughter relations
 - raw wire signals
 - calibrated wire signals
 - hits found on each wire ____
 - 3d reco tracks

root / lbne / CTree @
feature/chaoz_ctree

currently only store one algorithm (specify in the .fcl file)

 Currently a factor of ~10 — 50 reduction in data size (can be optimized in the future)

3D Event Display

- By default turned off many detector elements for visual clarity
- Can turn on DEs by hand (or can provide options in the future)

2D projections (next slide) can rotate, move, event navigation zoom in, zoom out, Viewer 1 Projections Files Events 🛅 🔽 Window Manager Hide Viewer 1 Actions MC tracks 📄 🔽 Viewers Scenes in solid 📆 🔽 Event 📉 🖊 Event 1: MC Tracks 🔳 lines 💉 🔽 1: mu+ 🗖 💉 🔽 44: e+ 🔲 121 🖹 📵 🔽 Event 1: Reco Tracks ■ 🔽 track 0 🗖 reco tracks 🖊 🔽 track 1 🗖 💉 🔽 track 2 🗖 in dashed lines Styl Scenes [TEveSceneList] TEveElement Show: V Self V Children hovering over each track will highlight the track in the 3d display

Main window: signals on the 3 wire planes

2D Event Display

Main Window

- The 3 planes are (from top to bottom)
 - Y (collection)
 - U (induction)
 - V (induction)
- X-axis is the common drift distance (cm) in x direction
 - tdc converted to cm based on drift velocity calculation
 - zoom in/out on x-axis will simultaneously zoom all 3 figures
- Z-axis is the distance (cm) perpendicular to the wires
 - calculated based on wire pitch and orientation
- Color scale/theme can be set from the right control panel

Wire Signal Window

- Click a wire in the main window will show its signal in the wire signal window
 - Raw signal (white)
 - Calibrated signal (yellow)
 - Hits found (green line)
- It will also show the channel#, wire#, tpc#, etc.

Collection Plane (Y)

Signal Processing

Raw Signal

Induction Plane (U)

Calibrated Signal

Induction Plane (V)

Hits

More Examples of Wire Signals

Collection Plane

Channel 1389: Plane 2, TPC 5, Wire 6 100 80 60 40 20 1610 1620 1630 1640 1650 1660 1670

Induction Plane

Z (|_ collection Y wire) vs X (drift axis) Run: 1 Event: 2 z [cm] 90 Hits: 327 500 Hit Channels: 72 / 139 / 61 80 400 70 60 300 50 200 40 < Prev Next > 30 100 Display Properties 20 125 x [cm] 85 90 95 105 110 115 120 100 Display Options UnZoom Auto Zoom V (induction U wire) vs X (drift axis) 1029 1597 X Range E 120 550 332 399 Color Scale 600 100 Show Induction Signal 500 80 60 400 Show APA □ 1 □ 2 □ 3 □ 4 40 300 20 Monte Carlo Truth 200 0 Parents (MeV) Children (MeV) -20 100 nu_mu (235.6) -40 mu+ (152.5) 120 125 x [cm] 105 110 115 Siblings (MeV) induction V wire) vs X (drift axis) u [cm] 60 350 40 300 20 250 0 200 -20 □ Show MC 150 -40 100 Color Theme Rainbow (Night) -60 C Film (Night) Sea (Day) 125 85 100 105 110 115 120 C Ink (Day) x [cm]

MC Tracks

- This panel controls the navigation of MC tracks
 - click the tracks in the parents/ children listbox to navigate
 - current only show
 a straight line from
 start to end in each
 plane.
 (Yizovue is working)
 - (Xiaoyue is working on displaying the whole trajectory)

Example: $K^+ \rightarrow mu^+ \rightarrow e^+$

Example:

$$K^+ -> mu^+ -> e^+$$

Example: $K^+ \rightarrow mu^+ \rightarrow e^+$

Planned Future Improvements

- Show the true trajectories (instead of start-end lines) and the reco tracks in the 2D display (already so in the 3D display)
- Add photon detector information
- Add muon paddle information
- Optimize the size/speed
- Many other little touches
- Any feedback/requests will be welcome